

Harmonization and Evaluation of Ground-based Instruments for Free-Tropospheric Ozone Measurements by TOAR-II Focus Working Group "HEGIFTOM"

R. Van Malderen¹, H.G.J. Smit², R. Blot³, T. Leblanc⁴, C. Vigouroux⁵, I. Petropavlovskikh⁶, F. Hendrick⁵, M. Vanroozendael⁵, A. Cede⁷, T. Hanisco⁸, O. Cooper⁹, and WG members

¹ RMI, Uccle, Belgium, ² FZJ, IEK-8, Jülich, Germany, ³ Laboratoire d'aérologie (LA), Toulouse, France, ⁴ JPL/Caltech, Wrightwood, USA, ⁵ BIRA, Uccle, Belgium, ⁶ CIRES & NOAA/GML, Boulder, USA, ⁷ Luftblick, Innsbruck, Austria, ⁸ NASA/GSFC, Greenbelt, USA, ⁹ NOAA/CSL, Boulder, USA

What are the differences between the vertical tropospheric ozone distributions measured by different ground-based instruments and how can we harmonize the different data sets for tropospheric ozone (trends) assessment?

Tropospheric ozone profiling techniques

Established Techniques:

- > Ozonesondes: Electrochemical balloon-borne sondes
- Lidar: UV-DIAL = Differential Absorption Lidar in UV spectrum
- FTIR: Fourier Transform Infra-Red of solar absorption spectrum
- ➤ IAGOS: UV Photometer aboard In-Service Aircraft
- Brewer/Dobson Umkehr: measuring intensity ratios at spectrophotometer UV wavelength pairs

New Techniques:

Ground-based

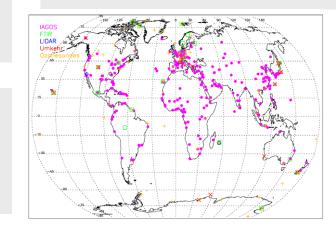
- ➤ MAX-DOAS: Multi-Axis Differential Optical Absorption Spectroscopy
- > Pandora: DOAS technique with Pandora UV-VIS spectrometer

Internal consistency within the networks

- ➤ **Harmonization** of operating procedures/correction algorithms at/between different sites
- Quality assessment: uncertainty estimates (random vs. systematic), quality flags, traceability to common standard?
- > Data archiving: versioning? Natural coordinates!
- > Achievements so far:
 - ozonesondes: 6 more sites homogenized (±10/50 remaining), standard operating procedures published
 - IAGOS: internal consistency paper published in AMT, simulation chamber comparison of IAGOS-CORE UVphotometer and reference photometer for ozonesondes
 - Lidar: TMF data has been updated with new data processor, OHP will follow
 - FTIR: flagging applied to the NDACC data
 - Brewer/Dobson Umkehr: 5 Dobson Umkehr sites have been homogenized (paper submitted to AMT), 1 to go. Updated uncertainty estimation of the retrievals.

External consistency: intercomparison

- cross intercomparison of data among different networks, but also with satellites/models
- characterization and evaluation of instrumental drifts among the different datasets


External consistency: intercomparison (continued)

- study the spatial and temporal representativeness of ground-based free tropospheric measurements, in collaboration with TOAR-II satellite and reanalysis focus groups
- development of free-tropospheric ozone retrieval algorithm with MAX-DOAS & Pandora at and comparison with other ground-based free tropospheric ozone data

Future research topics

- support TOAR-II satellite ozone focus working group to determine drifts and biases between satellite ozone retrievals
- > assessment of the tropospheric ozone distribution and trends of tropospheric ozone.

https://igacproject.org/hegiftom-focus-working-group

